
  

 

Abstract— This paper presents a method taking advantage of 
medically available MRI (Magnetic Resonance Imaging) data to 
derive the kinematics of a knee joint. The bio-joint model is 
applied to the design of a compliant sensing mechanism with two 
examples. The first investigates the effect of materials and 
characteristic geometry of the compliant mechanism on the 
knee joint, while the second (utilizing the bio joint model as 
boundary conditions to measure the knee joint rotation and 
internal forces involved) provides a better understanding on the 
interaction between the human knee and compliant sensing 
mechanism.  The results potentially help establish a new topic of 
accommodating human bio-joint variations and nature 
degrees-of-freedom movements in the design of an exoskeleton.     

Keywords: compliant mechanism, exoskeleton, dynamic model, 
flexible beam, knee joint sensor  

I. INTRODUCTION 

Kinetics and kinematics analysis of joints are among the 
key topics in the research of exoskeleton.  Most exoskeleton 
design analyses generally base on engineering joints rather 
than the natural bio-joints for which exoskeleton robots are 
designed to assist.  Human bodies, however, vary widely in 
shapes and sizes, and also changes over years, rigid 
engineering parts often are not compliant to accommodate 
these variations.   It has been noticed in [1] that ankle joint 
movements were greatly perturbed as soon as the exoskeleton 
power was added, causing significantly increased plantar 
flexion during stance. As a result, exoskeleton cannot be 
developed independently of studies of real bio joints. 

With the rapid advances in mechantronics and robotics, 
exoskeletons have widely been developed to assist or 
rehabilitate human body motions; for example, the 
commercialized Lokomat [2] that has actuated hip and knee 
joint for the treadmill training. The BLEEX (Berkeley lower 
extremity exoskeleton) [3] enables people to carry heavy 
loads over rough terrain. Another robot suit called HAL 
(Hybrid assistive Limb) [4] was also developed to assist 
walking and climbing. An ankle-foot orthosis powered by 
artificial pneumatic muscles was developed in [5]. A shoulder 
exoskeleton was also designed to help elderly persons’ daily 
life [6]. The Master II-ND developed at Rutgers is a 
force-feedback haptic glove using pneumatic actuators for the 
finger joints [7].  

While exiting rehabilitation robots have the advantages of 
gaining energy in human motions and adjusting motion 
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patterns (e.g. treadmill training), there are potential damages 
to human joints in long term usage because rigid joints are 
often not designed to account for natural joint motion 
variations.  

Compliant mechanisms that reduce assembled joints 
resulting in reduced frictions and increased energy efficiency 
can be employed in exoskeleton designs to accommodate 
shape/size/motion variation of human joints.  In [8], “soft” 
pneumatic Muscle Actuators (pMA) were used as power 
source to achieve the lightness. The LOPES [9] was designed 
using flexible cable transmission. However, most of the work 
on compliance is motivated by power efficiency rather than 
the interaction between the human body and the exoskeleton. 
Recent works also concern about shock absorption, for 
example, a flexible geared joint and a rubber footpad [10]. 
Besides energy gained from the robots, it is essential that the 
exoskeleton should not interfere negatively to the normal 
human joint motions; otherwise, it will result in discomfort 
potential long term damage. For these reasons, problems on 
interaction between bio joints and compliant mechanism are 
worthy of exploration.   

With MRI technology, joint details based on simple 
geometries (such as multi-circle/plane approximations) are 
available for studies [11]. To produce more informative 
model of kinematics and kinetics, it is desired that the models 
are mathematically differentiable.  For this reason, the 
remainder of this paper offers the followings: 

1. Motivated by the interests to understand the effect of 
modeling bio-joints [12][13] as engineering joints on the 
internal contact forces, we present a bio-joint model to 
analyze the flexion and the associated internal forces and 
torque within the joint. This model relaxes the commonly 
used engineering pin assumptions and thus, offers a more 
realistic approximation to predict the joint motion. The 
bio-joint model (that provides a means to account for the 
transitional motion interacting with rotation within the 
clearance of the joint) has been validated by comparing 
simulations against published MRI data [11].  

2. We offer a design method utilizing a three dimensional 
(3D) compliant half-circle mechanism to measure the 
knee rotational angle, and determine the internal 
force/torque within the knee. The effects of materials and 
aspect ratios of the sensing mechanism on the human knee 
joint are numerically analyzed with boundary conditions 
derived from the knee joint model. 

Although the analyses are in the context of a human knee 
joint, the results presented here can be extended to other type 
of bio-joints.   
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II. DYNAMIC MODEL OF HUMAN KNEE JOINT 

Unlike an engineering pin or ball joint, a biological joint 
(Bio-joint) consists of non-uniform shaped contact parts and 
often with a significant clearance between them. With MRI 
data (see for example, [11]), a bio-joint model can be built for 
a human knee joint to provide a better understanding of knee 
kinematics and kinetics, and estimate the contact location and 
rolling/sliding velocities, and the force and torques involved.  

A. Bio-joint model for a human knee  

Figure 1(a) shows a lateral sagittal MR image of an 
unloaded cadaver knee [11], where the two white circles are 
approximated geometries for the femoral articular surfaces. 
Figure 1(b) represents a more general representation of a 
bio-joint as discussed in [12], where A and B are two 
bodies with surfaces A and B respectively. As shown in Fig. 
1(b), A rolls on B; and C is an instantaneous contact point. 
The angular velocity  describes the motion of A at C. For 
the knee joint described in Fig. 1(a),  = dθ/dt where θ is the 
flexion angle.  It is worth noting that the rotation axis is 
always changing as the contact point moves.  The contact 
point on A and B moves incrementally from CA and CB to C 
along the respective osculating circles as shown in Fig. 1(b), 
where (OA, A) and (OB, B) are the centers and radii of the 
osculating circles contacting A and B respectively. The 
three dimensional (3D) motion of a biological joint can be 
characterized in the instantaneous osculating plane that 
depends on the location of the contact point.  

 

   

(a) MRI of a cadaver knee [11] (b) Bio-joint model [12] 
Fig. 1.  Bio joint Illustration 

Although data are presented as positions of the two (circle) 
centers denoted as EFC and FFC in Fig. 1(a), it is also valid to 
regard the contact occurred at points between a circle and a 
plane. To provide a continuous differentiable function, an 
alternative geometry based on an ellipse (red-dashed) is 
proposed to characterize the observed data. The effect of 
approximated geometries (circles and ellipse rolling on a flat 
plane) on the contact point position is analyzed as follows. 

For the knee joint shown in Fig. 1(a), the rolling velocity 
vroll is calculated as 

( )roll Av    (1) 
For an ellipse, ρA is not a constant but can be calculated for a 
specified geometry as a function of the contact position 
[12][13]. As a result, vroll depends on the flexion angle θ. As 
observed in [11], the sliding velocity vslide also depends on θ:  

 ( ) / /slide slide slidev ds dt ds d     (2) 

where the sliding displacement sslide can be obtained from the 
difference between MRI data and the bio joint kinematics 
without sliding. 

Knee joint kinematics 

Using a lumped-parameter approach for describing the 
knee motion, the lower limb (leg and foot) is characterized by 
the mass centered at O in the polar coordinate system (r, θ) 
with its origin assigned at the initial contact point Ci on the 
femur as shown in Fig. 2, where the reference axis (θ = 0) is 
along the longitudinal axis of the femur.  As shown in Fig. 2(b) 
which illustrates the knee joint model, the distance OCi is a 
constant r0. Because the translational motion is relatively 
small compared to the length of tibia, 

0r r h   and thus h r   

which corresponds to the dynamic effects of the joint 
clearance. As shown in Fig. 2(b), the distance h between O 
and C is perpendicular to the contact plane, and a function of 
flexion angles. For the purpose of deriving h() using data 
observed in [11], the contact point is referenced from the 
ipsilateral posterior tibial cortices (IPTC). 

 

(a) Internal joint force/torque (b) Illustrative approximation 
Fig. 2.  Coordinate and free body diagram 

For a relatively smooth rotation 0  , the knee joint 
kinematics can be computed from (3a, b) once h() is known: 

 /r dh d  ;  and  2 2 2/r d h d   (3a, b) 

The corresponding motion trajectory of the mass center O in 
the polar coordinate can be computed in terms of the flexion 
angle   from equations (4a, b, and c):  

r rr e ;  r r r θv e e  (4a,b) 
2( ) (2 ) r r r r     r θa e e     (4c) 

Knee joint kinetics  

From the Newton’s 2nd law, the equations of motion 
describing the calf dynamics with respect to the upper limb 
are given by (5a, b): 

g n rm    a f f f f  (5a) 

( 2 ) g a rJ mrr    k τ τ τ   where  r θk e e  (5b) 

In (5a), m is the calf mass; fg is the gravity force; and fn and fθ 
are the forces exerted by the surrounding (muscle and 
ligament) tissues in er and eθ directions respectively.  For 
rehabilitation applications we include the term fr in (5a) to 
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account for the force exerted by an external device (such as an 
exoskeleton or a compliant sensor element). In (5b), J is the 
moment of inertia; τg and τr denote the torques due to the 
gravity and external device respectively; and τa is a net torque 
accounting for fn, fθ, and tissue contraction within the knee.   

In (5b), the 1st term on the left hand side accounts for the 
leg rotation, while the 2nd term describes the interaction 

between   and r  due to the joint clearance. For a relatively 

smooth rotation 0  , the J  term can be neglected, which 
reduces the vector equations (5a, b) to three scalar equations 
(6a, b, c):   

 2 sin ( )g n rrm r r f f f       (6a) 

2  cos ( )g rmr f f f       (6b) 

2 ( )g a rmrr        (6c) 

Equation (6) provides a means to solve the inverse dynamics 
for the three unknowns (f, fn, a). 

B. Illustrative kinematic analysis of a human knee joint  

The inverse dynamics (6) require its bio-joint kinematics. 
To understand the effect of the geometrical approximations 
on the contact point (between the femoral condyle and tibia) 
and account for the sliding velocity, three models are 
simulated and compared against published data [11]:  

Model 1: Two sequential circles roll a flat plane [11].  

Model 2: Ellipse rolls on a flat plane without sliding.  

Model 3: Ellipse rolls on a flat plane with sliding.  

The dimensions of the approximated circles [11] and ellipse 
(Fig. 1a) are listed in Table 1, where the contact point is 
referenced from the IPTC. The simulated results are given as 
a function of flexion angle in Figs. 3 and 4.   

Table 1 Geometry approximation 
Circles [11] Ellipses 

r1= 21mm r2= 32mm rmaj=25.3mm rmin=21.1mm 
Initial contact position = 27mm; Angular velocity ω = 1.57 rad/s 

In Fig. 3, the contact point positions are the horizontal 
distance of C from the IPTC in Fig. 1(a).  Figure 4 shows the 
rolling velocity (1) and the sliding velocity (2) as well as their 
ratio vroll/vslide based on Model 3. Some observations in Figs 3 
and 4 are discussed as follows:  

a) In Model 1, the velocity ratio vroll/vslide is given as 1.7 [11]. 
For each rolling circle, the sliding velocity is assumed 
constant and thus, the contact point position is a linear 
function of . As shown in Fig. 3, the overall result, 
however, is not a smooth curve due to the transition from 
circles r2 to r1.  

Some discrepancies between the 2-circle model and 
experimental results can be observed when  > 90. This is 
because the rotational axis of the circle is tilted by a small 
angle. When projected on the camera plane, the tilted circle 
is essentially shown as an ellipse. 

b) Base on the above observation, we model bio-joints [12] 
using ellipsoidal surfaces as they offer a more realistic 

characterization than a multi-circle model, and are 
mathematically differentiable.  As shown in Fig. 3 which 
compares Models 2 and 3 against experimental data, both 
sliding and rolling must be considered in the knee joint 
kinematics. Model 3 is used for the subsequent analysis. 

c) The sliding displacement sslide() is obtained by subtracting 
the results of Model 2 from the experimental data in Fig. 3.    

4 3 2( ) / 0.113 -0.358 +0.098 +0.876slide majs r      (7) 

The corresponding vslide can then be obtained from (2). As 
shown in Fig. 4, the vroll/vslide ratio is not a constant but its 
average value of 1.68 closely agrees with the experimental 
observation [11] of 1.7. Similarly,  

3 2( ) / 0.107 +0.493 +0.146majh r      (8) 

With h(), and r r  in the inverse dynamic model (6) can be 
computed from (3a) and (3b) respectively. 

 
Fig. 3.  Comparison of contact positions  

 

 
(a) Characteristic joint displacements (b) Rolling and sliding velocities 

Fig. 4.  Results illustrating knee joint kinematics (Model 3) 

III. 3D COMPLIANT RING MECHANISMS   

Compliance mechanisms that account for the bio-joint 
kinematics can be used as a knee sensor to measure the 
flexion angle  and hence the internal forces/torque (f, fn, a) 
from the inverse dynamics (6).  

A. Design concept of compliant ring sensor 

Figure 5 illustrates a compliant half-ring mechanism 
(between the lower and upper limbs) for a human knee joint.  
The half-circle twisting-ring [14] has been chosen for 
illustration because it has a number of applications in 
mechatronics.  As shown in Fig. 5(b), one end is rigidly 
attached to the thigh. The other end is connected through a 
prismatic joint to the calf such that the flexion angle θ can be 
determined from the location of the free end (calf) relative to 
the fixed end (thigh) of the compliant ring.  
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The coordinate systems for design analysis of the 
compliant beam are defined in Fig. 1(a), where XYZ is a fixed 
reference frame; xyz and ξηζ are the orthogonal curvilinear 
frames for describing the initial and deformed shape 
respectively. The x and ξ axes are along the un-deformed and 
deformed reference axes of the beam respectively. The y and z 
axes are in the principal directions of the observed cross 
section area. Similarly, η and ζ correspond to y and z but in the 
deformed configuration. Without loss of generality, we 
assume that the reference axis passes through the center of the 
(rectangular) cross section in the following illustration. 

 

 

(a) coordinate systems  (b) knee joint attachment 
Fig. 5.  Human knee joint with a 3D compliant ring 

As shown in Fig. 2(b), Ci is the initial contact point, and h 
is the normal distance of Ci on the femur to the (tibia) plane, 
the distance moved along the tibia sC = CiC where C is the 
current contact point. For the rotation angle θ, the end point 
(Xe,Ye,Ze) of the compliant ring is constrained such that Xe 
freely slides along the x-axis while Ye and Ze are given by 

cos cos tan ,    sine slide eY h s Z h       (9) 
The interest here is to find the flexion angle θ and the internal 
forces/torque vector (f, fn, a) by measuring Xe along with the 
models of the complaint ring, and the inverse dynamics (6).  
Thus, in formulating a quasi-static model for the compliant 
ring, the flexion angle θ and the displacements (Ye, Ze) are 
specified as boundary conditions for solving Xe and the force 
F=[F1, F2, F3]

T and moment M=[M1, M2, M3]
T at the end 

point (s = πR).  The internal forces/torque vector (f, fn, a) can 
be calculated from (6), where the forces/torque (frr, frθ, τr) 
acting by the sensor are given by (10) 

1
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3

cos sin 0

sin cos 0
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r
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 (10) 

B. Quasi-static model of a compliant beam 

The initial curved shape is described by (11): 
T T

x y z x y z
d

ds
       i i i k i i i  (11) 

where the unit vectors ix, iy and iz are along the axes x, y and z; 
and i1, i2 and i3 along the axes ξ, η and ζ; s is the undeformed 
arc length from the root of the beam to the reference point on 
the observed cross section; and k = [k1, k2, k3]

T describes the 
initial curvatures.  

Kinematics 

The deformed and un-deformed coordinate systems are 
related by a rotational matrix [T]:  

 T T
1 2 3[ ] [ ]x y zi i i T i i i  (12)

where
T

1 2 3      T T T T ; and 
T

i 1 2 3i i iT T T   T . Because of 

the orthogonal property
T -1
      T T , [T] can be written as     

   
1 0 0

0 cos sin ( )

0 sin cos

  
 

 
   
  

T B    (13) 

where φ is an Euler angle for twisting about the ξ axis; and the 
transformation matrix [B()] is due to the bending rotation   
as shown in Fig. 6.  In (12), 

11 1cos xT   i i ; 2 2
1 12 13sin x T T    i i .  (14a,b) 

For 0 180    ( 11 1T   ), [B()] is given in terms of T1 

and  in (12) [14][15]: 

 
11 12 13

2
12 11 13 11 12 13 11

2
13 12 13 11 11 12 11

( ) / (1 ) / (1 )

/ (1 ) / (1 )

T T T

T T T T T T T

T T T T T T T


 
       
      

B  (15) 

Since 2 2 2
1 11 12 13 1T T T   T  (16) 

only three of the four variables (T11, T12, T13 and φ)  in [T] are 
independent. 

Governing equations 

For negligible torsional warping, the axial strain e and the 
curvatures after deformation ρ=[ρ1, ρ2, ρ3]

T can be expressed 
using the following relationship [15]: 

1

22 33

01 1 1 1
, , ,

e F
diag

EA GJ EI EI

      
       

      ρ M k
 (17) 

where E is the elastic modulus; G is the shear modulus; A is 
the cross section area; J is the polar moment of inertia; and I22 
and I33 are the moments of inertia. 

The force and moment equations for the 3D compliant 
beam are given by (18a) and (18b) respectively:  

  F
    F ρ F T q  (18a) 

 T3 2(1 ) 0  Me F F       M ρ M q  (18b) 

where F=[F1, F2, F3]
T and M=[M1, M2, M3]

T are the force and 
moment in terms of ξηζ coordinates respectively; the 
derivatives (denoted by ) is taken with respect to the path 
length s; qF are distributed forces acting along the axes x, y 
and z; and qM are the distributed moments acting along the 
axes ξ, η and ζ.  From (11) to (15), we have 

1 3 2 2 3      1T T T k T  (18c) 

   T T
1 (1 )u v w u v w e       1k T  (18d) 

   1 13 12 12 13 11/ 1T T T T T       1k T  (18e) 
 

where u, v and w are the displacements of the observed 
reference point in the directions of axes x, y and z 
respectively.   
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For the application in Fig. 5, the boundary conditions (BCs) 
are given in Fig. 6. The four vector and one scalar equations, 
(18a-e), are governing equations for solving the 13 unknowns 
(F1, F2, F3; M1, M2, M3; T11, T12 T13; u, v, w;); 12 of them are 
independent. The boundary condition problem (BVP) 
characterized by (18) can be recast as an initial value problem 
(IVP) and solved using a multiple shooting method (MSM) 
[16] as summarized in the Appendix. To solve using the 
MSM, the (guessed) values of the six force/moment 
component variables (Fi and Mi, i=1, 2 and 3) at s=0 must also 
be specified as initial conditions. 

 

/ 0,s R   

11 12 13=cos ,  =sin ,  =0T T T   
=  = 0 u v w    

/ ,s R   

12 13sin ,  0T T   

eu Y , ev Z , 0   

b/h =2; =/4 
Fig. 6.  Boundary conditions of the half-circle twist ring 

IV. ILLUSTRATIVE EXAMPLES AND RESULTS 

To provide intuitive insights the effects of material 
properties, aspect ratios (b/h), and the end-point (Ye, Ze) 
displacements on the ring deformation, the following 
illustrative examples are analyzed numerically:  

1. Compliant ring only (Ye=Ze=0): The flexion angle θ is 
specified resulting in twisting the ring at (=0,π).  
(a) Effect of cross-sectional aspect ratio 
(b) Effect of different materials  

2. Combined compliant ring and knee joint, where the 
end-point (Ye, Ze) displacements are specified with (9) in 
addition to the flexion angle θ.  

Example 1: Effect of aspect ratios and materials (Ye=Ze=0) 

For design purposes, the results are presented in 
non-dimensional forms; the bases of the normalization are 
tabulated in Table 2. The deformed shape of the compliant 
ring (b/h =2) subject to a pure twisting of =/4 at both ends 
is shown in Fig. 7. The effects of aspect ratios (b/h =2, 3, 6), 
and four different materials (steel, titanium, aluminum and 
delrin) on the (normalized) twisting moment M3 at the ends 
are compared in Fig. 8. Numerical values of the characteristic 
parameters for the four materials are compared in Table 3. 

Table 2 Basis of normalization 
Geometry Displacement Force Moment

R, b/h 
, , ~u v w R  2

33~ /F EI R  33~ /M EI R  

, ~ 1/k R  3
33~ /Fq EI R  2

33~ /Mq EI R  

Table 3 Material properties 
Parameters Steel Titanium Aluminum Delrin 
E (GPa) 193 116 70 3.1 
Poisson ratio 0.25 0.34 0.3 0.35 
Density(103kg/m3) 7.85 4.54 2.7 1.42 

As shown in Fig. 8, the effect of different materials is 
relatively insensitive on the normalized twisting moment M3 
at the ends. However, different normalized M3 curves are 
needed for different aspect ratios (b/h). 

 

 

Fig. 7.  Normalized deformed shape 
of the twisted compliant ring 

Fig. 8.  Effect of aspect ratios and 
materials 

Example 2: Effect of flexion end on combined compliant ring 
and knee joint (Ye0 Ze0) 

The compliant ring is connected to the knee joint as shown 
in Fig. 5. Numerical values characterizing a human lower 
extremity and the compliant ring geometry used in this 
example are given in Table 4 [17].  The combined mass of the 
rotational part (lower leg/foot) is 3.62kg and its normal 
distance r0 from the center O to the contact plane is 0.2453m.  

The following computational procedure is used:  

Step 1: For a given θ, calculate Ye and Ze from (9). 

Step 2: Solve (18) with boundary conditions given in Fig. 6. 

Step 3: Obtain Xe = w, F=[F1, F2, F3]
T and M=[M1, M2, M3]

T 
for the end s = πR. 

Step 4: Calculate frr, frθ and τr from (10). 

Step 5: Calculate fn, fθ and τa from (6). 

Step 6: Repeat Steps 1 to 5 for different θ. 

Table 4 Physical parameters of human’s lower limb 
Human Length (m) Mass (kg) 
Upper leg 0.40 7.02 
Lower leg/foot  0.37/0.27 2.44/1.18 
Stainless steel ring 
R=76.2mm b = 6.35mm h = 0.635mm 

Figure 9, which graphs the end-point displacements 
(Xe,Ye,Ze) of the half-circle ring as a function of the flexion 
angle , shows that the knee flexion angle  can be 
determined from the translation Xe by a displacement sensor 
system.  To determine the extra effort needed to overcome the 
added stiffness due to the compliant ring, we compare the 
internal forces/torque vector (f, fn, a) with and without 
wearing the compliant ring mechanism in Fig, 10. For a 
flexion angle of less than 90, the maximum percentage errors 
for fn, f, anda are 3.7%, 14.5% and 1.2% respectively.  As 
compared in Fig. 10, the compliant ring mechanism has little 
effect on the internal forces and torque in the knee joint. 

V. CONCLUSIONS 

A general method of modeling the kinematics and kinetics 
of a human knee joint has been presented, which provides a 
means to account for the transition within the clearance of the 
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joint. This method does not assume a fixed rotational axis and 
thus more realistically characterizes a bio-joint. The 
ellipsoidal bio-joint model derived from published MRI data, 
which is mathematically differentiable, has been applied to 
design of a three dimensional (3D) compliant half-circle 
mechanism. The effects of materials and the aspect ratios (of 
the mechanism with a rectangular cross section) on the design 
are presented. The design of a compliant sensing mechanism 
is numerically analyzed with boundary conditions derived 
from the knee joint model. The results have demonstrated the 
concept feasibility of obtaining the rotation angle of a human 
knee joint by measuring translational motion displacement of 
the compliant sensing mechanism. 

 

 
Fig. 9.  End-point displacements (Xe,Ye,Ze) 

 

Fig. 10.  Effect of compliant ring on the internal force/torque vector   

APPENDIX  
Multiple shooting method (MSM) 

The boundary condition problem (BVP) of a 3D compliant beam can be 
written in the following form:  

( , ),     ( (0), ( ))s L  X f X g X X 0  (A.1) 

where X is a vector of the 13 variables; 0 ≤ s ≤ L with L being the beam length; 
and  g() is the boundary conditions (BCs) specifying the geometrical 
loading constraints at both ends. The BVP (A.1) is recast as an initial value 
problem (IVP) and solved using a MSM [16].  For this, the region [0, L] is 
divided into m-1 sections by m nodes as shown in Fig. A, where si is the arc 
length from the root of the beam to the ith node; xi

(n) is the initial guess for the 
ith section, and the superscript (n) denotes the nth guess.   

 
Fig. A.  Multiple shooting method 

The BVP can then be posed as a set of m 1st-order non-linear equations 
(A.2) subject to a set of m constraints (A.3) as functions of the initial guesses: 

( )( , ),     ( ) n
i is s  X f X X x  (A.2) 
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 (A.3) 

Using Newton method, the initial guesses are updated using (A.4): 
1

( 1) ( ) ( ) ( )( ) ( ),       0,1,...n n n nD n
     x x C x C x  (A.4) 

where DC = ∂C/∂x(n) is a matrix, α is a coefficient for the iteration step size. 
The iteration process of (A.4) stops until C(x(n)) 0 ( or a small tolerance 
error Errtol) implying that the solution is continuous and satisfies the BCs.  
The MSM can be implemented using the following steps: 

1. Set the initial guess (0) (0) (0) (0)
1 2[ ]mx x x x . 

2. Solve the IVP (9a) with X(0) = x(0). 
3. Calculate the residual ||C(x(0))|| and corresponding DC = ∂C/∂x(0). 
4. Update the initial guess by (A.4). 
5. Repeat steps 2~4 (replacing x(0) with x(n)) until ||C(x(n))|| < tolerance 

error Errtol.  
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